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QLS-Integrality of Complete r-Partite Graphs

Milan Pokornýa

aTrnava University, Faculty of Education, Priemyselna 4, P.O.BOX 9, 918 43 Trnava, Slovakia

Abstract. A graph G is called A-integral (L-integral, Q-integral, S-integral) if the spectrum of its adjacency
(Laplacian, signless Laplacian, Seidel) matrix consists entirely of integers. In this paper we study connec-
tions between the Q- (L,S,A) integral complete multipartite graphs. Moreover, new sufficient conditions
for a construction of infinite families of QLS-integral complete r′′-partite graphs Kp1 ,p2 ,...,pr′′ = Kb1 ·p1 ,b2 ·p2 ,...,bs ·ps

from given QLS-integral r′-partite graphs Kp1 ,p2 ,...,pr′ = Ka1 ·p1 ,a2 ·p2 ,...,as ·ps are given. Using these conditions new
infinite classes of such graphs for s = 4, 5, 6 are constructed, which affirmatively answers to questions
proposed by Wang, Zhao and Li in [10, 14]. Finally, we propose open problems for further study.

1. Introduction

We shall start with some definitions to a general M-theory.
Let G be a simple graph on n vertices, and let M be a real symmetric matrix associated to G. The

characteristic polynomial |xI −M| of M is called the M-characteristic polynomial (or M-polynomial) of G
and is denoted by MG(x). The eigenvalues of M (i.e. the zeros of MG(x)) are also called the M-eigenvalues
of G (M-spectrum of G). The M-spectrum of G is real because M is symmetric.

In particular, if M is equal to one of the matrices A (adjacency matrix), Q = D(G) + A, L = D(G) − A,
S = J − I− 2A, where D(G) is the diagonal matrix of the vertex degrees in G and J is a square matrix with all
elements equal to 1, then the corresponding spectrum is called A-spectrum, Q-spectrum, L-spectrum and
S-spectrum, respectively. Throughout the paper the corresponding characteristic polynomials are denoted
by PG(x) = |xI − A|, QG(x) = |xI − Q|, LG(x) = |xI − L|, SG(x) = |xI − S|, respectively. The zeros of these
polynomials are denoted by λi; i = 1, 2, ...,n, µi; i = 1, 2, ...,n, κi; i = 1, 2, ...,n and ρi; i = 1, 2, ...,n, respectively.
A graph G is M-integral, M ∈ {A,Q,L,S}, if all the eigenvalues of its M-polynomial are integers. The study
of integral graphs was initiated in [3]. A survey of integral graphs is given in [1]. For a connections between
M theories see [2].

A complete r-partite graph Kp1,p2,...,pr is a graph with a set V = V1 ∪V2 ∪ · · · ∪Vr of |V| = p1 + p2 + · · ·+ pr
vertices, where Vi’s are nonempty disjoint sets, |Vi| = pi for 1 ≤ i ≤ r, such that two vertices in V are adjacent
if and only if they belong to different Vi’s. Assume that the number of distinct integers of p1, p2, . . . , pr is
s. Without loss of generality, assume that the first s ones are distinct integers such that p1 < p2 < · · · < ps.
The complete r-partite graph Kp1,p2,...,pr = Kp1,...,p1,...,ps,...,ps is also denoted by Ka1·p1,a2·p2,...,as·ps , where r =

∑s
i=1 ai
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and |V| =
∑s

i=1 aipi. For results on A-integral complete r-partite graphs see for example [4–6, 9, 11–13]. For
results on Q-integral complete r-partite graphs see for example [8, 14], for results on S-integral complete
r-partite graphs see [7, 8, 10] and for results on L-integral complete r-partite graphs see [15].

In this paper we give a relationship for M-integrality of complete r-partite graphs where M ∈ {A,Q,L,S}.
For example, it is easy to see that if Ka1·p1,a2·p2,...,as·ps is Q-integral, then it is also S-integral and L-integral. We
also give new sufficient conditions for a construction of infinite classes of Q-integral (S-integral) complete
r′′-partite graphs to a given Q-integral (S-integral) complete r′-partite graph. Using these conditions
we construct infinite classes of QLS-integral complete multipartite graphs, which affirmatively answers
to questions 4.1 and 4.2 of [10] and also questions 4.1 and 4.2 of [14]. Although concrete examples of
QLS-integral complete multipartite graphs Ka1·p1,a2·p2,...,as·ps with s = 4, 5, 6 are given in [8], in this paper we
construct infinite classes of these graphs. Finally, we propose open problems for further study.

2. Preliminaries

In [14] Zhao et al. gave necessary and sufficient conditions for complete multipartite graphs
Ka1·p1,a2·p2,...,as·ps to be Q-integral, which are given in the following theorem.

Theorem 2.1. [14] If the complete r-partite graph Kp1,p2,...,pr = Ka1·p1,a2·p2,...,as·ps on n vertices, n = a1p1+a2p2+· · ·+asps,
is Q-integral, then there exists integers µi(i = 1, 2, ..., s) such that

−∞ < n − 2ps < µs < n − 2ps−1 < µs−1 < · · · < n − 2p1 < µ1 < ∞ (1)

and the positive integers ai(i = 1, 2, ..., s) satisfying

ak =

∏s
i=1(µi − n + 2pk)

pk
∏s

i=1,i,k 2(pk − pi)
; k = 1, 2, . . . , s. (2)

Conversely, suppose that there exist integers µi(i = 1, 2, ..., s) such that −∞ < n− 2ps < µs < n− 2ps−1 < µs−1 <
· · · < n − 2p1 < µ1 < ∞ and the numbers

ak =

∏s
i=1(µi − n + 2pk)

pk
∏s

i=1,i,k 2(pk − pi)
; k = 1, 2, . . . , s

are positive integers. Then the complete r-partite graph Kp1,p2,...,pr = Ka1·p1,a2·p2,...,as·ps is Q-integral.

In [10] Wang et al. gave similar necessary and sufficient conditions for multipartite graphs Kp1,p2,...,pr =
Ka1·p1,a2·p2,...,as·ps to be S-integral.

Theorem 2.2. [10] If the complete r-partite graph Kp1,p2,...,pr = Ka1·p1,a2·p2,...,as·ps on n vertices is S-integral then there
exists integers ρi(i = 1, 2, ..., s) such that

ρ1 < 2p1 − 1 < ρ2 < 2p2 − 1 < · · · < 2ps−1 − 1 < ρs < 2ps − 1 < ∞ (3)

and the numbers a1, a2, . . . , as satisfying

ak = −

∏s
i=1(ρi − 2pk + 1)

pk
∏s

i=1,i,k 2(pi − pk)
; k = 1, 2, . . . , s (4)

are positive integers.
Conversely, suppose that there exist integers ρi(i = 1, 2, ..., s) such that ρ1 < 2p1 − 1 < ρ2 < 2p2 − 1 < · · · <

2ps−1 − 1 < ρs < 2ps − 1 < ∞ and the numbers



M. Pokorný / Filomat 29:5 (2015), 1043–1051 1045

ak = −

∏s
i=1(ρi − 2pk + 1)

pk
∏s

i=1,i,k 2(pi − pk)
; k = 1, 2, . . . , s

are positive integers. Then the complete r-partite graph Kp1,p2,...,pr = Ka1·p1,a2·p2,...,as·ps is S-integral.

The following theorem gives a relationship between Q-integrality and S-integrality of complete r-partite
graphs.

Theorem 2.3. [8] A complete multipartite graph is S-integral if and only if it is Q-integral.

The theorem straightforward follows from the fact that for the nontrivial factors of the Q- and S-
characteristic polynomials

Q∗(x) =

s∏
i=1

(x − n + 2pi)

1 − s∑
i=1

pi

x − n + 2pi


and

S∗(x) =

s∏
i=1

(x − 2pi + 1)

1 +

s∑
i=1

pi

x − 2pi + 1


holds that

S∗(x) = (−1)sQ∗(n − x − 1),

from which follows that Theorem 2.2 can be proved from Theorem 2.1 using substitution ρi = n − µi − 1.

Theorem 2.4. [15] The graph Kp1,p2,...,pr is L-integral for every positive integers pi and its L-spectrum is {0,nr−1, (n−
pi)pi−1

}; i = 1, 2, . . . , r, where n is the number of vertices of Kp1,p2,...,pr .

Example 2.5. We shall give here A-spectrum, Q-spectrum, L-spectrum and S-spectrum for two classes of graphs:
complete graphs Kp1 and complete a1-partite graphs Ka1·p1 .

Complete graph Kp1 , p1 ≥ 2:
A: {p1 − 1, (−1)p1−1

}

Q: {2(p1 − 1), (p1 − 2)p1−1
}

L: {0, pp1−1
1 }

S: {p1 − 1, (−1)p1−1
}

Complete a1-partite graph Ka1·p1 :
A: {p1(a1 − 1), (−1)a1−1, 0a1p1−a1 }

Q: {2p1(a1 − 1), (a1p1 − 2p1)a1−1, (a1p1 − p1)a1(p1−1)
}

L: {0, a1pa1−1
1 , (a1p1 − p1)a1(p1−1)

}

S: {p1 − 1, (−1)a1p1−1
}

So Kp1 and Ka1·p1 are AQLS-integral for any a1, p1 ∈ N.

3. Main Results

The following two theorems give constructions of the infinite class of Q-integral (S-integral) graphs
Kb1·p1,b2·p2,...,bs·ps from known Q-integral (S-integral) graph Ka1·p1,a2·p2,...,as·ps . The similar theorem for A-integral
graphs is given in [4].
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Theorem 3.1. Let the complete r′-partite graph Kp1,p2,...,pr′ = Ka1·p1,a2·p2,...,as·ps on n = a1p1 + a2p2 + · · · + asps vertices
with non-zero eigenvalues µi (i = 1, 2, ..., s) is Q-integral, where µi (i = 1, 2, ..., s) are all Q-eigenvalues of the
nontrivial part of its Q-spectrum. Then complete r′′-partite graph Kp1,p2,...,pr′′ = Kb1·p1,b2·p2,...,bs·ps on n′ vertices is
Q-integral with non-zero Q-eigenvalues µ′i (i = 1, 2, ..., s), for

dk = GCD

 s∏
i=2

(µi − n + 2pk), pk

s∏
i=1,i,k

2(pk − pi)

 , k = 1, 2, ..., s, (5)

sk =

∏s
i=2(µi − n + 2pk)

dk
, k = 1, 2, ..., s, (6)

r = LCM(r1, r2, ...., rs), rk =
pk
∏s

i=1,i,k 2(pk − pi)

dk
, k = 1, 2, ..., s, (7)

bk = ak +
skr
rk

t, k = 1, 2, ..., s, (8)

µ′1 = µ1 + 2rt, µ′i = µi + rt, i = 2, ..., s, (9)

n′ = n + rt, (10)

for any positive integer t.

Proof. Using (2),(5-10) and Theorem 2.1 we have

bk = ak + r
sk

rk
t; k = 1, 2, ..., s,

bk = ak + r
∏s

i=2(µi − n + 2pk)
pk
∏s

i=1,i,k 2(pk − pi)
t; k = 1, 2, ..., s,

bk =
(µ1 − n + 2pk)

∏s
i=2(µi − n + 2pk) + rt

∏s
i=2(µi − n + 2pk)

pk
∏s

i=1,i,k 2(pk − pi)
; k = 1, 2, ..., s,

bk =
(µ1 − n + 2pk + rt)

∏s
i=2(µi − n + 2pk)

pk
∏s

i=1,i,k 2(pk − pi)
; k = 1, 2, ..., s,

bk =
(2rt + µ1 − n − rt + 2pk)

∏s
i=2(rt + µi − n − rt + 2pk)

pk
∏s

i=1,i,k 2(pk − pi)
; k = 1, 2, ..., s,

bk =
(µ′1 − n′ + 2pk)

∏s
i=2(µ′i − n′ + 2pk)

pk
∏s

i=1,i,k 2(pk − pi)
; k = 1, 2, ..., s.

From (6) and (7) follows that bk, k = 1, 2, ..., s are positive integers for every nonnegative integer t.
By Theorem 2.1 we have −∞ < n − 2ps < µs < n − 2ps−1 < µs−1 < ... < n − 2p1 < µ1 < +∞, from which we

get −∞ < n + rt− 2ps < µs + rt < n + rt− 2ps−1 < µs−1 + rt < ... < n + rt− 2p1 < µ1 + rt < µ1 + 2rt < +∞. Using
(9) we get −∞ < n′ − 2ps < µ′s < n′ − 2ps−1 < µ′s−1 < ... < n′ − 2p1 < µ′1 < +∞.

Now, by Theorem 2.1, the graph Kb1·p1,b2·p2,...,bs·ps is Q-integral.
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Theorem 3.2. Let the complete r′-partite graph Kp1,p2,...,pr′ = Ka1·p1,a2·p2,...,as·ps on n = a1p1 + a2p2 + · · · + asps vertices
with non-zero eigenvalues ρi (i = 1, 2, ..., s) is S-integral, where ρi (i = 1, 2, ..., s) are all S-eigenvalues of the nontrivial
part of its S-spectrum. Then complete r′′-partite graph Kp1,p2,...,pr′′ = Kb1·p1,b2·p2,...,bs·ps on n′ vertices is S-integral with
non-zero S-eigenvalues ρ′i (i = 1, 2, ..., s), for

dk = GCD

 s∏
i=2

(ρi − 2pk + 1), pk

s∏
i=1,i,k

2(pi − pk)

 , k = 1, 2, ..., s, (11)

sk =

∏s
i=2(ρi − 2pk + 1)

dk
, k = 1, 2, ..., s, (12)

r = LCM(r1, r2, ...., rs), rk =
pk
∏s

i=1,i,k 2(pi − pk)

dk
, k = 1, 2, ..., s, (13)

bk = ak +
skr
rk

t, k = 1, 2, ..., s, (14)

ρ′1 = ρ1 − rt, ρ′i = ρi, i = 2, ..., s, (15)

for any positive integer t.

Proof. Proof is similar to the proof of theorem 3.1 and follows from theorem 2.2.

From Theorems 2.3 and 2.4 we have the following corollary.

Corollary 3.3. Let G = Kp1,p2,...,pr . The following statements are equivalent:
1. G is Q-integral.
2. G is S-integral.
3. G is QLS-integral.

From Corollary 3.3 and Corollary 2.9 of [14] we have the following corollary.

Corollary 3.4. For any positive integer q, the complete multipartite graph Ka1·p1q,a2·p2q,...,as·psq is QLS-integral if and
only if the graph Ka1·p1,a2·p2,...,as·ps is QLS-integral.

Remark 3.5. Let GCD(p1, . . . , ps) denote the greatest common divisor of the numbers p1, . . . , ps. Corollary 3.4 shows
that it is reasonable to study QLS-integrality of graphs Ka1·p1,a2·p2,...,as·ps only for GCD(p1, . . . , ps) = 1.

4. Application of Main Results to Construction of New Classes of QLS-Integral Complete Multipartite
Graphs

It is easy to see that for complete bipartite graphs we have the following results.

Corollary 4.1.
a. The graph Kp1,p2 is QLS-integral for any positive integers p1, p2.
b. The graph Kp1,p2 is AQLS-integral if and only if p1 · p2 is a perfect square.
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Table 1: QLS-integral complete graphs Kb1 ·p1 ,b2 ·p2 ,b3 ·p3 ,b4 ·p4 .

No. 1 2 3 4 5 6 7 8

a1 4 8 17 20 18 22 17 15
p1 2 2 2 1 1 1 3 2
a2 1 2 2 4 5 4 2 3
p2 6 9 7 5 3 10 7 7
a3 1 1 2 3 2 1 1 1
p3 9 15 9 7 7 14 12 12
a4 1 1 1 2 2 1 2 3
p4 24 20 11 10 22 19 18 18
µ1 71 117 143 151 161 171 209 213
µ2 39 59 67 76 87 87 101 108
µ3 32 44 61 69 80 69 92 97
µ4 11 33 56 63 61 60 83 89
ρ1 -25 -49 -67 -71 -71 -77 -97 -97
ρ2 7 9 9 4 3 7 11 8
ρ3 14 24 15 11 10 25 20 19
ρ4 35 35 20 17 29 34 29 27
r 504 3432 9240 1260 1596 5928 1320 1320
b1 4 + 72t 8 + 528t 17 + 2244t 20 + 350t 18 + 399t 22 + 1672t 17 + 220t 15 + 198t
b2 1 + 14t 2 + 104t 2 + 231t 4 + 63t 5 + 105t 4 + 247t 2 + 24t 3 + 36t
b3 1 + 12t 1 + 44t 2 + 220t 3 + 45t 2 + 38t 1 + 57t 1 + 11t 1 + 11t
b4 1 + 7t 1 + 39t 1 + 105t 2 + 28t 2 + 28t 1 + 52t 2 + 20t 3 + 30t

Now, using computer search, Theorems 3.1,3.2 and Corollary 3.3 we construct new infinite classes of
QLS-integral complete multipartite graphs Kb1·p1,b2·p2,...,bs·ps where s = 4, 5, 6.

By computer we have found 8 Q-integral (S-integral) complete multipartite graphs Ka1·p1,a2·p2,...,a4·p4 on
less than 120 vertices (see also [8]). Their list together with the nontrivial part of their Q-spectrum (S-
spectrum) is in the table 1, rows 2-17. Moreover, using theorems 3.1 and 3.2 and corollary 3.3 we can
construct infinite classes of QLS-integral complete multipartite graphs Kb1·p1,b2·p2,b3·p3,b4·p4 for each of these
graphs. The parameters bi of these infinite classes are presented in table 1. Note that the non-trivial part of
their Q-spectrum (S-spectrum) can be calculated using Theorems 3.1 and 3.2, formulas (9) and (15).

Corollary 4.2.
a. Let a1, p1, a2, p2, a3, p3, a4, p4 be those of Table 1. Then Ka1·p1,a2·p2,a3·p3,a4·p4 is QLS-integral complete multipartite

graph.
b. Let b1, p1, b2, p2, b3, p3, b4, p4 be those of Table 1. Then Kb1·p1,b2·p2,b3·p3,b4·p4 is QLS-integral complete multipartite

graph for every t ∈ N.

Proof.
a. It is sufficient to use Theorems 2.1, 2.2 and 2.3.
b. It is sufficient to use Theorems 2.3, 3.1 and 3.2.

Using computer we have found 7 Q-integral (S-integral) complete multipartite graphs
Ka1·p1,a2·p2,a3·p3,a4·p4,a5·p5 on less than 1000 vertices (see also [8]). Their list together with the nontrivial part of
their Q-spectrum (S-spectrum) is in Table 2, rows 2-21. Moreover, using Theorems 3.1, 3.2 and Corollary 3.3
we can construct infinite classes of QLS-integral complete multipartite graphs Kb1·p1,b2·p2,b3·p3,b4·p4,b5·p5 for each
of these graphs. The parameters bi of these infinite classes are presented in table 2. Note that the non-trivial
part of their Q-spectrum (S-spectrum) can be calculated using Theorems 3.1 and 3.2, formulas (9) and (15).
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Table 2: QLS-integral complete graphs Kb1 ·p1 ,b2 ·p2 ,b3 ·p3 ,b4 ·p4 ,b5 ·p5 .

No. 1 2 3 4 5 6 7

a1 39 46 15 18 36 9 20
p1 3 2 4 11 5 8 2
a2 3 9 18 2 13 4 17
p2 12 10 10 18 15 14 9
a3 2 7 4 6 6 5 2
p3 17 15 13 20 25 19 16
a4 1 6 5 3 3 14 1
p4 27 21 15 26 39 23 29
a5 3 4 9 5 1 3 12
p5 45 27 20 37 49 50 42
µ1 655 1011 1067 1189 1341 1339 1454
µ2 331 512 537 587 673 676 752
µ3 319 497 523 580 649 665 730
µ4 301 485 519 569 621 655 718
µ5 280 471 512 553 596 607 698
ρ1 -307 -491 -521 -573 -651 -645 -697
ρ2 17 8 9 29 17 18 5
ρ3 29 23 23 36 41 29 27
ρ4 47 35 27 47 69 39 39
ρ5 68 49 34 63 94 87 59
r 67320 1175720 240240 2217072 3403400 6588120 158340
b1 39 + 8415t 46 + 109480t 15 + 6825t 18 + 67184t 36 + 185640t 9 + 89838t 20 + 4524t
b2 3 + 612t 9 + 20748t 18 + 8008t 2 + 7293t 13 + 65065t 4 + 39215t 17 + 3770t
b3 2 + 396t 7 + 15827t 4 + 1760t 6 + 21736t 6 + 29172t 5 + 48300t 2 + 435t
b4 1 + 187t 6 + 13260t 5 + 2184t 3 + 10659t 3 + 14025t 14 + 133672t 1 + 210t
b5 3 + 510t 4 + 8645t 9 + 3861t 5 + 17160t 1 + 4550t 3 + 26565t 12 + 2436t
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Corollary 4.3.
a. Let a1, p1, a2, p2, a3, p3, a4, p4, a5, p5 be those of Table 2. Then Ka1·p1,a2·p2,a3·p3,a4·p4,a5·p5 is QLS-integral complete

multipartite graph.
b. Let b1, p1, b2, p2, b3, p3, b4, p4, b5, p5 be those of Table 2. Then Kb1·p1,b2·p2,b3·p3,b4·p4,b5·p5 is QLS-integral complete

multipartite graph for every t ∈ N.

Proof. The proof is similar to that of corollary 4.2.

Corollary 4.4.
a. Let a1 = 44, p1 = 6, a2 = 107, p2 = 10, a3 = 24, p3 = 13, a4 = 50, p4 = 19, a5 = 25, p5 = 24, a6 = 53, p6 = 33.

Then Ka1·p1,a2·p2,a3·p3,a4·p4,a5·p5,a6·p6 is QLS-integral complete multipartite graph. The nontrivial part of its Q-spectrum
is {9847, 4932, 4921, 4915, 4901, 4889} and the nontrivial part of its S-spectrum is {−4903, 12, 23, 29, 43, 55}.

b. Let b1 = 44 + 846032t, p1 = 6, b2 = 107 + 2054052t, p2 = 10, b3 = 24 + 460161t, p3 = 13, b4 = 50 + 956340t,
p4 = 19, b5 = 25 + 477204t, p5 = 24, b6 = 53 + 1008007t, p6 = 33. Then Kb1·p1,b2·p2,b3·p3,b4·p4,b5·p5,b6·p6 is QLS-integral
complete multipartite graph for every t ∈ N.

Proof. The proof is similar to that of corollary 4.2. The value of r is 94486392.

Remark 4.5. In [8] the following results for Q-integral graphs are given:
1. (see Theorem 7 of [8]) The complete tripartite graph

K F2
2n−F2n

2 ,
F2

2n+F2n
2 ,F2

2n−1

is Q-integral for n ≥ 2, where F0 = F1 = 1,Fn = Fn−1 + Fn−2 are Fibonacci numbers.
2. (see Theorem 8 of [8]) The complete 4-partite graph K3(b2+1),(b2+1)2,9b2,3b2(b2+1) is Q-integral for any b ∈ Z.
Using Corollary 3.3 the graphs K F2

2n−F2n
2 ,

F2
2n+F2n

2 ,F2
2n−1

, K3(b2+1),(b2+1)2,9b2,3b2(b2+1) are QLS-integral. Moreover, using

Theorems 3.1, 3.2 and Corollary 3.3 we can construct infinite classes of QLS-integral complete multipartite graphs
for each of these graphs.

5. Conclusion

There are two ways of constructing infinite classes of QLS-integral complete r′′-partite graphs for any
QLS-integral r′-partite graph. One of them follows from Corollary 3.4. It keeps the number of partites and
multiplies the number of vertices in each partite by q. The second method follows from Theorems 3.1, 3.2
and Corollary 3.3. It keeps the number of vertices in each partite and enlarges number of partites. Note
that we can combine these methods.

In the paper new infinite families of QLS-integral complete multipartite graphs Ka1·p1,a2·p2,...,as·ps , where
s = 3, 4, 5, 6 are given, what partly answers the questions 4.1 and 4.2 of [10] and also the questions 4.1 and
4.2 of [14]. Howeover, when s > 6, we have not found such QLS-integral complete multipartite graphs, so
the problem of existence of QLS-integral complete multipartite graphs Ka1·p1,a2·p2,...,as·ps for s > 6 remain open.
Thus we raise the following question.

Question 1. Are there any QLS-integral complete multipartite graphs Ka1·p1,a2·p2,...,as·ps where s > 6?

The existence of QLS-integral complete multipartite graphs Ka1·p1,a2·p2,...,as·ps where a1 = a2 = · · · = as = 1
and s < 5 follows from [8] and this paper. Thus we raise the following question.

Question 2. Are there any QLS-integral complete multipartite graphs Ka1·p1,a2·p2,...,as·ps where a1 = a2 =
... = as = 1 and s ≥ 5?

It is easy to see that Kp1 and Ka1·p1 are AQLS-integral for any a1, p1 ∈ N. Complete bipartite graphs Kp1,p2

are AQLS-integral if and only if p1 · p2 is a perfect square. Thus we give the following question.
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Question 3. Are there any AQLS-integral complete multipartite graphs Kp1,p2,...,ps where p1 < p2 < · · · < ps
and s > 2?
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Fak., Ser. Mat., 13 (2002) 42-65.
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